找到
6
篇与
绘图
相关的结果
- 第 2 页
-
Python绘制热力图代码 Python绘制热力图代码 import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd import matplotlib.font_manager as fm # 创建数据 data = { "绩效期望": [1, 0.712, 0.687, 0.651, 0.451, 0.743, 0.646, 0.696, 0.684], "努力期望": [0.712, 1, 0.745, 0.731, 0.499, 0.701, 0.618, 0.745, 0.665], "促进因素": [0.687, 0.745, 1, 0.817, 0.544, 0.781, 0.766, 0.713, 0.801], "社会影响": [0.651, 0.731, 0.817, 1, 0.602, 0.757, 0.691, 0.744, 0.759], "感知风险": [0.451, 0.499, 0.544, 0.602, 1, 0.57, 0.593, 0.589, 0.576], "享乐动机": [0.743, 0.701, 0.781, 0.757, 0.57, 1, 0.752, 0.806, 0.782], "价格价值": [0.646, 0.618, 0.766, 0.691, 0.593, 0.752, 1, 0.716, 0.834], "个体创新": [0.696, 0.745, 0.713, 0.744, 0.589, 0.806, 0.716, 1, 0.779], "使用意愿": [0.684, 0.665, 0.801, 0.759, 0.576, 0.782, 0.834, 0.779, 1] } # 将数据转换为DataFrame df = pd.DataFrame(data, index=["绩效期望", "努力期望", "促进因素", "社会影响", "感知风险", "享乐动机", "价格价值", "个体创新", "使用意愿"]) # 设置字体 plt.rcParams['font.family'] = 'Microsoft YaHei' # 设置绘图的大小 plt.figure(figsize=(10, 8)) # 绘制热力图 sns.heatmap(df, annot=True, cmap='coolwarm', center=0, linewidths=0.5, fmt=".3f", cbar_kws={'label': '相关性'}) # 设置标题 plt.title("相关性分析热力图") # 显示热力图 plt.show()